Stanford Networking Seminar

2:15PM, Tuesday May 4, 2010
Gates 104


SwitchBlade: A Platform for Rapid Deployment of Network Protocols on Programmable Hardware
 

Nick Feamster
Georgia Tech


About the talk:
We present SwitchBlade, a platform for rapidly deploying custom protocols on programmable hardware. SwitchBlade uses a pipeline-based design that allows individual hardware modules to be enabled or disabled on the fly, integrates software exception handling, and provides support for forwarding based on custom header fields. SwitchBlade's ease of programmability and hardware-level performance enables rapid prototyping of custom data-plane functions that can be directly deployed in a production network. SwitchBlade integrates common packet-processing functions as hardware modules, enabling different protocols to use these functions without having to resynthesize hardware. SwitchBlade's customizable forwarding engine supports both longest-prefix matching on arbitrary fields in the packet header and exact matching on a hash value. SwitchBlade's software exceptions can be invoked based on either packet or flow-based rules and updated quickly at runtime, thus making it easy to integrate more flexible forwarding function into the pipeline. SwitchBlade also allows multiple custom data planes to operate in parallel on the same physical hardware, while providing complete isolation for protocols running in parallel. We implemented SwitchBlade using Xilinx Virtex-II Pro FPGA on the NetFPGA board, but SwitchBlade can be implemented with any FPGA. To demonstrate SwitchBlade's flexibility, we use SwitchBlade to implement and evaluate a variety of custom network protocols: we present instances of IPv4, IPv6, Path Splicing, and an OpenFlow switch, all running in parallel while forwarding packets at line rate. This work is joint with Bilal Anwer, Murtaza Motiwala, and Mukarram bin Tariq.

About the speaker:
Nick Feamster is an assistant professor in the College of Computing at Georgia Tech. He received his Ph.D. in Computer science from MIT in 2005, and his S.B. and M.Eng. degrees in Electrical Engineering and Computer Science from MIT in 2000 and 2001, respectively. His research focuses on many aspects of computer networking and networked systems, including the design, measurement, and analysis of network routing protocols, network operations and security, and anonymous communication systems. In December 2008, he received the Presidential Early Career Award for Scientists and Engineers (PECASE) for his contributions to cybersecurity, notably spam filtering. His honors include a Sloan Research Fellowship, the NSF CAREER award, the IBM Faculty Fellowship, and award papers at SIGCOMM 2006 (network-level behavior of spammers), the NSDI 2005 conference (fault detection in router configuration), Usenix Security 2002 (circumventing web censorship using Infranet), and Usenix Security 2001 (web cookie analysis).